Research Report ਙੋ

EXPLORATION SYSTEM FOR OPTIMIZATION OF SHAPE MEMORY ACTUATION IN COMPOSITIONAL SPREADS

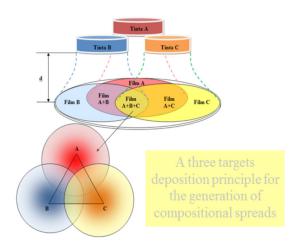
Goal of the project

The project aims to design, fabricate and develop a combinatorial exploration system for optimization of microactuation using the sputtering technique of thin film compositional spreads.

Short description of the project

The project has as main fundamental objectives the development of an exploration system that would allow:

- a combinatorial optimization of actuation using the sputtering technique to generate compositional spreads;


- the development of models for combinatorial systems adapted for investigation of actuation;

- the implementation of the combinatorial exploration system for the case of intelligent materials, with focus on shape memory alloy families;

- the development of microactuators with controlled and optimized functionality;

- the investigation or modelling of systems for the exploration, and

- the microfabrication of materials with "on demand" properties, adapted for applications in microsystem engineering.

Project implemented by

A research group of the te Department of Materials and manufacturing Engineering of the "Politehnica" University of Timisoara

Main activities

Several experimental objectives have been defined:

identification of specific design requirements for a system dedicated to generating combinatorial libraries of metallic materials;
design of an exploration path for specific functionalities;

- design and fabrication of an exploratory system that allows sputtering of compositional spreads;

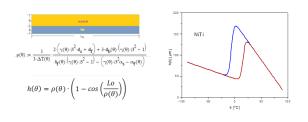
- design and microfabrication of substrates for the investigations of functional libraries;

- microfabrication of sputtered compositional spreads based on shape memory alloy compositions;

- microstructural-compositional characterization of libraries;
- design of an actuator based on thin film microfabrication.

The exploratory system aims to accelerate the innovation process in the fabrication of micro sensors and actuators.

Implementation period

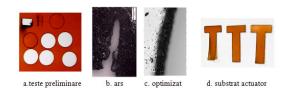

2011-2014

Research Report ছ্ল

Results

A combinatorial deposition system was designed and is in the process of beeing finalized for the smart materials investigations. A model for the prediction of actuation in bimorphs based on shape memory alloy films was identified.

Substrates for deposition of thin films were manufactured by laser cutting.



Applicability and transferability of the results

The output of the project is related to the development of a high-performance research instrument which will facilitate the initiation of accelerated innovation processes in the advanced functional materials field. Actuators like the ones for which the project develops an advanced R&D tool are expected increase the development of miniaturized products and expected to take over a variety of functions in microsystem dedicated to future aircraft, translating electronic or optical equipments.

Fields of interest

Materials Engineering, Smart Sensors and Actuators, Micro and nanoengineering, Microsystems.

Research centre

R esearch Centre for Processing and Characterization of Advanced Materials

Financed through/by

Romanian National Authority for Scientific Research, grant CNCS - UEFISCDI, project number PN-II-ID-PCE-2011-3-0837

Research team

Members and collaborators of the Department of materials and Manufacturing Engineering: Assoc. Prof. Corneliu M. Craciunescu Prof. Victor Budau Prof. Ion Mitelea Assoc. Prof. Aurel Ercuta

Contact information

Assoc. Prof. Corneliu M. Craciunescu, PhD Department of Materials and Manufacturing Engineering Address: Bd. Mihai Viteazu, No. 1, R0300222, Timisoara Phone: (+40) 256 403 655 Fax: (+40) 256 403 523 E-mail: corneliu.craciunescu@upt.ro